1,603 research outputs found

    The Mode of Computing

    Full text link
    The Turing Machine is the paradigmatic case of computing machines, but there are others, such as Artificial Neural Networks, Table Computing, Relational-Indeterminate Computing and diverse forms of analogical computing, each of which based on a particular underlying intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newell's hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by the brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry levels and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.Comment: 35 pages, 8 figure

    Why Does Public Transport Not Arrive on Time? The Pervasiveness of Equal Headway Instability

    Get PDF
    BACKGROUND: The equal headway instability phenomenon is pervasive in public transport systems. This instability is characterized by an aggregation of vehicles that causes inefficient service. While equal headway instability is common, it has not been studied independently of a particular scenario. However, the phenomenon is apparent in many transport systems and can be modeled and rectified in abstraction. METHODOLOGY: We present a multi-agent simulation where a default method with no restrictions always leads to unstable headways. We discuss two methods that attempt to achieve equal headways, called minimum and maximum. Since one parameter of the methods depends on the passenger density, adaptive versions--where the relevant parameter is adjusted automatically--are also put forward. Our results show that the adaptive maximum method improves significantly over the default method. The model and simulation give insights of the interplay between transport design and passenger behavior. Finally, we provide technological and social suggestions for engineers and passengers to help achieve equal headways and thus reduce delays. CONCLUSIONS: The equal headway instability phenomenon can be avoided with the suggested technological and social measures

    Evolving Material Porosity on an Additive Manufacturing Simulation with the Generalized Method of Cells

    Get PDF
    The effect of material porosity on final part distortion and residual stresses in a selective laser sintering manufacturing simulation is presented here. A time-dependent thermomechanical model is used with the open-source FEA software CalculiX. Effective homogenized material properties for Inconel 625 are precomputed using NASAs Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). The evolving porosity of the material is estimated with each pass of the laser beam during simulation runtime. A comparison with a homogenous model and the evolving model shows that the evolving porous model predicts larger distortions with greater residual stresses

    The Post-Stalin Komsomol and the Soviet Fight for Third World Youth

    Get PDF
    Based upon evidence from archives in Russia, Georgia, Latvia and Estonia, this article examines the ways in which the USSR’s Communist Youth League (Komsomol) worked to advance the Soviet cause among world youth during the Cold War. These ranged from cultural propaganda through to attempts at political subversion, and played a role not just in fortifying the regime’s international standing but also serving important domestic purposes at the same time

    Early onset of heavy rainfall on the northern coast of Ecuador in the aftermath of El Niño 2015/2016

    Get PDF
    In January 2016, a high-precipitation event (HPE) affected northwestern Ecuador, leading to devastating flooding in the Esmeraldas River Basin. The HPE appeared in the aftermath of the 2015/16 El Niño as an early onset of heavy rainfalls, normally expected in the peak rainy season between March and April. We investigate the local HPE atmospheric setting and the regional “weather-within-climate” characteristics of the growing-season rainfall between December and January using gauge data, satellite imagery, and reanalysis. The unusual convective environment in late January 2016 involved local and synoptic drivers leading the development of a mesoscale convective complex (MCC) during the nighttime of 24th January. The genesis of the MCC was related to an early-arriving thermal weather state and orographic lifting; the Andean ranges acted as both a channel boosting upslope flow and convective updrafts and as a heavy rain divide for inner valleys. The synoptic controls were associated with 1) a southern boundary of the inter-tropical convergence zone, abnormally displaced to 4°N as response to the 2015/16 El Niño where eastward air surges merge upward vertical mass fluxes; 2) the arrival to the Ecuadorian coast of an equatorially propagating Kelvin wave; and 3) a low-mid level moisture influx coming from the Amazon associated with ascent due to changes in the Walker circulation. Lastly, we suggest that the convective environment in late January was also favored by cross-time-scale interference of the very strong El Niño event and a strong and persistent Madden-Julian oscillation (MJO) in the central Pacific
    corecore